Homework

Calculate the elastic scattering kinematics (use relativistic kinematics)

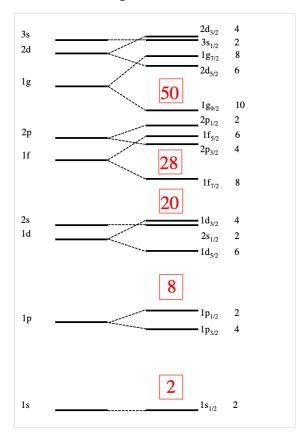
• Known : incident electrons (E_{inc} , P_{inc}), scattering angle (Θ)

• Unknown: outgoing electrons (E_{out}, P_{out})

Assuming a homogenous sphere of radius R

Known density

$$\rho(r) = \begin{cases} \frac{3}{4}\pi R^3 & \text{for } r \le R \\ 0 & \text{for } r > R \end{cases}$$

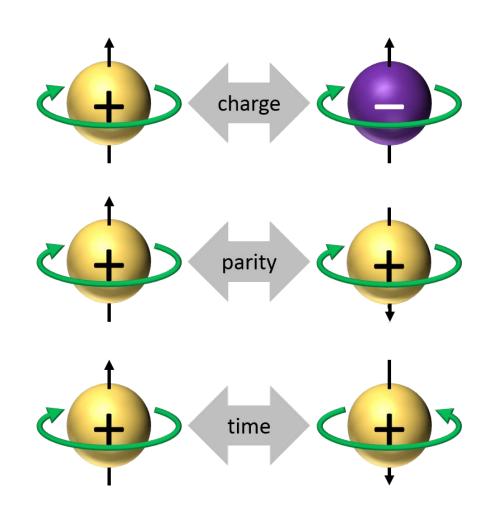

• Replacing the density $\rho(r)$ to show that the form factor $F(\mathbf{q}^2)$ is

$$F(\mathbf{q}^2) = 4\pi \int \rho(r) \frac{\sin(|\mathbf{q}|r/\hbar)}{|\mathbf{q}|r/\hbar} r^2 dr = \frac{3}{\alpha^3} (\sin \alpha - \alpha \cos \alpha) ; \alpha = |\mathbf{q}|R/\hbar$$

NuPEERS Rare Isotopes HOMEWORK

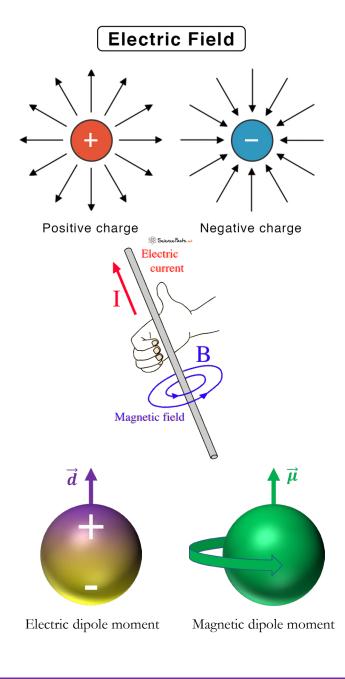
- 1) We want to study the clustering in ²⁴Mg:
 - a. How many protons and neutrons does this nucleus have?
 - b. How many alpha particles would this be?
 - c. Show the shell structure of the protons and neutrons in ²⁴Mg with the diagram below, for its ground state. Does it have any closed shells?

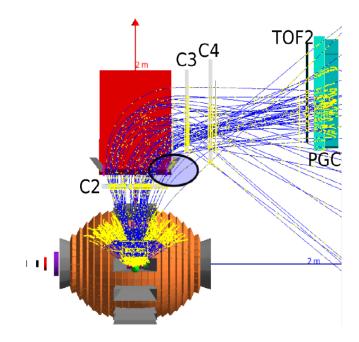
2) We are performing an experiment to understand the structure of ¹²Be, using the following reaction:


$$^{13}\text{B} + \text{d} \rightarrow {}^{3}\text{He} + {}^{12}\text{Be}$$

We are using a beam of 13 B at 30 MeV/u and a gas detector filled with deuterium (D₂) with density $\rho(D_2) = 0.171 \ kg/m^3$ at 1 atmosphere

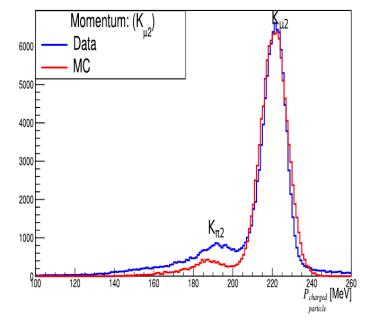
- a. How many protons and neutrons does our beam and product nucleus have?
- b. What are the half-lives of ¹³B and ¹²Be?
- c. How many nucleons are transferred in the reaction?
- d. What type of nuclear reaction is this?
- e. Show the shell structure of the protons and neutrons in ¹²Be with the diagram above, for its ground state. Does it have any closed shells?


The Discrete Fundamental Symmetries


- Charge-conjugation (C): replace matter with antimatter
 - Charge changes sign. Polar vectors (e.g. momentum) and axial-vectors (e.g. spin) are unchanged.
- Parity (P): spatial reflection
 - Polar vectors change sign. Charge and axial-vectors are unchanged.
- Time (T): direction of the clock
 - Axial-vectors change sign. Charge and polar vectors are unchanged.

Homework

- Review the definition of polar vectors and axial vectors. Is an electric field a polar vector or axial vector? Which is the magnetic field? How do these transform under C-symmetry, P-symmetry, and T-symmetry?
- A magnetic dipole moment $\vec{\mu}$ can be thought of as the strength of a current loop. How does it transform under C-symmetry, P-symmetry, and T-symmetry? Consider a particle with both a spin and a magnetic dipole moment. Does the initial state look like the final state after a T transformation? That is, does the magnetic dipole moment violate T symmetry?
- An electric dipole moment \vec{d} measures a separation of charge, and points from negative to positive. How does it transform under C-symmetry, P-symmetry, and T-symmetry? Consider a particle with both a spin and an electric dipole moment. Does the initial state look like the final state after a T transformation? That is, does the electric dipole moment violate T symmetry?


Terminology:

 $\bullet \ K_{\mu 2}: K^+ \to \mu^+ \nu$

• $K_{\pi 2}: K^+ \to \pi^+ \pi^0$

- Momentum distribution of at C4
- E_{loss} and material budget well described

Momentum at C4

Homework Problem:

- o The **K meson** decays at rest as shown in the left box. Please calculate the momentum of the daughter particles μ^+ , π^+
- Explain why the momentum is seen to have "shifted"

Things to keep in mind:

Mass of K⁺: 493.677 MeV/c²

Mass of μ^+ : 105.658 MeV/ c^2

 \circ Mass of π^+ : 139.570 MeV/ c^2

 \circ Mass of π^0 : 134.977 MeV/ c^2

You can treat the neutrino as massless