
Calibrating the Liquid Drop Model Challenge
https://github.com/ascsn/theory-challenges

The purpose of this challenge is for you to calibrate the Liquid Drop Model https://
en.wikipedia.org/wiki/Semi-empirical_mass_formula.

If you have never done anything with Python, we suggest you take a look at this: https://
www.youtube.com/watch?v=AJFen_Z3mWM&t=1524s. Also, ChatGPT can be of much help
to start learning how to code well: https://chatgpt.com/

Your task are to:

*Non-Bayesian way:

• Import the data from the AME 2016 table (included in the github). We are only using
nuclei above A=16 to avoid light nuclei where the LDM fails particularly. Perform a curve
fit using the built in functions from python (https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.curve_fit.html) and take note of the reported uncertainties in
the parameters.

• Construct a cost function as the sum of the squares of the residuals between your
model predictions and the experimental data.

• Numerically minimize this cost function as a function of the four Liquid Drop Model
parameters (search on google for scipy minimize function). The optimal parameters will
come out of the minimization.

• Make a plot of the residual of your calibrated model and the experimental data. Notice
anything interesting pattern?

*Bayesian way:

• Make a model calibration using the Bayesian formalism that is defined in the
acompaning file "# Guided Example Bayesian calibration". For the error, use your
estimation from the previous point (the model error in this case is much smaller than
the actual experimental uncertainties).

• Plot the corner plot posterior as well as the model values on the Binding Energy per
nucleon for the Calcium chain up to 60Ca including the available experimental data.

• What would be the results if you have used in the calibration the Binding Energy per
nucleon instead of the total Binding Energy?

• Bonus: Find the experimental error in the masses and repeat the calibration using only

Calibrating Liquid Drop Challenge http://127.0.0.1:8888/nbconvert/html/Calibrating%20Liquid%20Drop...

1 of 2 6/12/2024, 9:26 AM

https://github.com/ascsn/theory-challenges
https://github.com/ascsn/theory-challenges
https://en.wikipedia.org/wiki/Semi-empirical_mass_formula
https://en.wikipedia.org/wiki/Semi-empirical_mass_formula
https://en.wikipedia.org/wiki/Semi-empirical_mass_formula
https://en.wikipedia.org/wiki/Semi-empirical_mass_formula
https://www.youtube.com/watch?v=AJFen_Z3mWM&t=1524s
https://www.youtube.com/watch?v=AJFen_Z3mWM&t=1524s
https://www.youtube.com/watch?v=AJFen_Z3mWM&t=1524s
https://www.youtube.com/watch?v=AJFen_Z3mWM&t=1524s
https://chatgpt.com/
https://chatgpt.com/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

experimental errors. This should give a good demonstration on the dangers of not
taking into account model errors.

import numpy as np

data = np.loadtxt('Masses2016.txt', skiprows=1)

def LDM(params,x):

#x = (n,z)

#params= parameters (volume, surface, asymmetry, Coulomb)

n=x[0]

z=x[1]

return params[0]*(n+z) - params[1]*(n+z)**(2/3) - params[2]*((n-z)**2/(n+z)) - params

In [2]:

In [3]:

Calibrating Liquid Drop Challenge http://127.0.0.1:8888/nbconvert/html/Calibrating%20Liquid%20Drop...

2 of 2 6/12/2024, 9:26 AM

