NuPEERS Rare Isotopes HOMEWORK

- 1) We want to study the clustering in ²⁴Mg:
 - a. How many protons and neutrons does this nucleus have?

12 protons & 12 neutrons

b. How many alpha particles would this be?

6 α (⁴He) particles

c. Show the shell structure of the protons and neutrons in ²⁴Mg with the diagram below, for its ground state. Does it have any closed shells?

OR neutrons

The last shell is the $1d_{5/2}$ and it only has 4 nucleons out of the 6 available, so it is OPEN

2) We are performing an experiment to understand the structure of ¹²Be, using the following reaction:

$$^{13}B + d \rightarrow {}^{3}He + {}^{12}Be$$

We are using a beam of ¹³B at 30 MeV/u and a gas detector filled with deuterium (D₂) with density $\rho(D_2) = 0.171 \ kg/m^3$ at 1 atmosphere

a. How many protons and neutrons does our beam and product nucleus have?

$$^{13}_{5}B_{8} + ^{2}_{1}H_{1} \rightarrow ^{3}_{2}He_{1} + ^{12}_{4}Be_{8}$$

d- deuterium, it is a proton and a neutron, or ¹H

B-boron, 5 protons, so 8 neutrons

Be – Beryllium, 4 protons, so 8 neutrons

b. What are the half-lives of ¹³B and ¹²Be?

From Nudat, we have:

$$t_{1/2} {\binom{13}{5}B} = 17.16 \pm 0.18 \, ms$$

 $t_{1/2} {\binom{12}{4}Be} = 21.46 \pm 0.05 \, ms$

If you have a certain number of nuclei at a certain time, after this half-time $t_{1/2}$ half of the nuclei will have decayed.

c. How many nucleons are transferred in the reaction?

Here we concentrate on the heavier nuclei in the reaction. We start from $^{13}_{5}B$ and go to $^{12}_{4}Be$ so we remove a **proton** from nucleus in this reaction

- d. What type of nuclear reaction is this?
 Since we remove one nucleon only, it could be a transfer OR a knockout reaction. However, we are given the initial energy of the reaction as 30 MeV/u, which means that we are at low energy and have a **transfer reaction**.
- e. Show the shell structure of the protons and neutrons in ¹²Be with the diagram above, for its ground state. Does it have any closed shells?

On the proton side, we have 4 protons. We first fill the $1s_{1/2}$ shell with two protons and fill that one, then we have two protons left in the $1p_{3/2}$ shell, but this one can have 4 protons. This means that the last proton shell is **open**.

On the neutron side, we have now 8 neutrons. This will fill the $1s_{1/2}$ shell with 2 neutrons, $1p_{3/2}$ shell with four neutrons, and then the $1p_{1/2}$ shell with the remaining two neutrons. This means that ALL shells on the neutron side are **closed**.

Remember as a rule that we are filling the shells from the lowest one and just going in order, so when we talk about a open/closed shell, we usually talk about the last shell, that is the first one that can pick up a nucleon easily if it is open, or can have a nucleon removed or excited to a higher level.