### Intermediate and High Energy Physics

### Bishoy H. Dongwi CFNS Edward Bouchet Fellow

Stony Brook University, Stony Brook NY 11794

June 13, 2024







# Joy of studying physics



# Joy of studying physics



### Overture

- Introduction
  - Define some terms
- How Good Is the Standard Model?
  - Intermediate Energy Regime: Lepton Universality
  - TREK/E36 Experiment
- Where is the Mass of Universe?
  - What is the Proton?
- Closing

## Fundamental particles, what are they?



Defining some terms...



## Fundamental particles, what are they?

### Defining some terms...



A rose is a rose, is a rose... by Gertrude Stein



### Big Question Number 1: Just How Good is the SM?



- Lepton universality is a staple of the SM
- Leptons are distingushiable only through their masses
- Ergo: leptons have identical coupling constants
- Violation of lepton flavor universality is clear evidence of BSM Physics

### Big Question Number 1: Just How Good is the SM?



- Lepton universality is a staple of the SM
- Leptons are distingushiable only through their masses
- Ergo: leptons have identical coupling constants
- Violation of lepton flavor universality is clear evidence of BSM Physics

This is a good place to search for New Physics



## Lepton Universality: 2-body decay of $K^+$

- LHCb, Belle & BaBar observed lepton non-universality at 3σ level
- E36 will test lepton universality with stopped K<sup>+</sup>

LHCb (Phys. Rev. Lett. 113)



### Decay width ratio of electronic $(K_{e2})$ and muonic $(K_{\mu 2})$ decay modes

$$R_K^{SM} = \frac{\Gamma(K^+ \to e^+ \nu)}{\Gamma(K^+ \to \mu^+ \nu)} = \frac{m_e^2}{m_\mu^2} \left( \frac{m_K^2 - m_e^2}{m_K^2 - m_\mu^2} \right)^2 (1 + \delta_r)$$

- Hadronic uncertainties cancel
- Strong *helicity* suppression of electronic channel enhances sensitivity to effects beyond SM
- SM prediction is highly precise:  $R_K^{SM} = (2.477 \pm 0.001) \times 10^{-5}$

This is good! Now what?







 $\frac{\text{Stopped } K^+ \text{ method}}{\text{K1.1BR beamline}}$   $K^+ \text{ stopping target}$ 

Momentum measurement
MWPC (C2, C3, C4)
Spiral fiber tracker (SFT)
Thin trigger counter (TTC)

Particle ID TOF AC

PGC

 $\frac{\mathsf{Gamma\ ray}}{\mathsf{Csl}(\mathsf{TI})}$ 

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♥

### Simulation Studies



- Need a system of detectors
- Redundancy in particle identification (PID) detectors
- Active target useful for decay information

#### Central Detector



## Consistency Checks and Diagnostics



### Terminology:

- $\bullet \ \ \textit{K}_{\mu 2}:\textit{K}^{+} \rightarrow \mu^{+} \nu$
- $K_{\pi 2}: K^+ \to \pi^+ \pi^0$

- Momentum distribution of  $K_{u2}$  and  $K_{\pi 2}$  at C4
- ullet  $E_{loss}$  and material budget well described
- Magnetic field integral is well described
- MC smeared with detector resolution

  Momentum at C4



### Putting it All Together...







Geant4 E36 detector

Detector Assembly

## What Exactly is the Proton?



### What Exactly is the Proton?





CODATA'06 (2008) Bernauer (2010) Pohl (2010) Zhan (2011) CODATA'10 (2012) Antognini (2013) CODATA'14 (2015) Bever (2017) Fleurbaey (2018) Sick (2018) Mihovilović (2019/2021) Alarcon (2019) Bezginov (2019) Xiong (2019) Grinin (2020) CODATA'18'(2021) Brandt (2022)

MUSE (proj.)

#### Proton Puzzles

- Proton spin crisis from 1987
- Proton radius puzzle
- Missing mass of the universe

### The Universe Within the Proton



# **EIC Physics**



# **EIC Physics**



## Deep Inelastic Scattering: e - p





- Electron: 20. GeV/c
- $Q^2$ : momentum transfer
- x: momentum fraction carried by parton (quarks/gluons)





- Extract kinematic plots from scatering
- Most e's maintain their direction

## Re-cap

Stay Inquisitive, maintain

And

Nourish your sense of wonder/awe

