

Rare Isotope Physics

Dr Clémentine Santamaria (MSU²)

June 13th, 2024

- 1. Introduction
- 2. Shell model & clustering
- 3. Nuclear radioactivity
- 4. Nuclear reactions

- 1. Introduction
- 2. Shell model & clustering
- 3. Nuclear radioactivity
- 4. Nuclear reactions

WHAT IS A NUCLEUS?

- Oxygen mass=
 15.9994 a.m.u
- How many neutrons are there in Oxygen?

• Atom size: $10^{-10} m$ - Nucleus size: $10^{-15} m$

- Nuclei composed of protons & neutrons
- Element: defined by the atomic number
- Atomic number = number of protons in nucleus

Oxygen = 8 protons

. . .

THE TABLE OF ISOTOPES

- Isotopes = Nuclei with the same number of protons
- Oxygen = 4 different isotopes present in nature: ¹⁵O, ¹⁶O, ¹⁷O, ¹⁸O

Protons

- Stable nuclei in black
- All other colors show radioactive nuclei
- They will decay within a certain time and with a certain method (α, β, γ, n, p, fission)

ISOTOPES, ISOTONES, ISOBARS

Every nucleus is characterised by:

 $_{z}^{A}X_{N}$

Z: Proton number (chemical element)

N: Neutron number

A=Z+N: Mass number

Isotopes: Nuclei with same Z

Isotones: Nuclei with same N

Isobars: Nuclei with same A

Charge of the nucleus **Ze** with e=1.602 10⁻¹⁹ C **Neutral atom** has Z protons and Z electrons **Ion**: missing or added electron(s) (q=1⁺,2⁺,...,Z⁺)

https://www.nndc.bnl.gov/nudat3/

NUCLEAR CHART

- Stable nuclei (in black) form the "valley of stability"
- Radioactive nuclei known (in yellow) and all other possible unknown (in green)

- 1. Introduction
- 2. Shell model & clustering
- 3. Nuclear radioactivity
- 4. Nuclear reactions

MAGIC NUCLEI & EXOTIC NUCLEI

- Magic numbers= 2, 8, 20, 28, 50, 82...
- Corresponds to closed (or full) shells in our nuclear shell model
- Magic number signature= high first excited state
- Example: 48Ca, doubly magic

SHELL MODEL NOTATIONS

- Quantum numbers to define possible states:
 - Principal quantum number n
 - Orbital angular momentum ℓ ($\ell = 0,1,2,3,4$ are s,p,d,f,g orbitals)
 - Spin s (here +1/2 or -1/2, as both protons and neutrons are fermions)
 - Total angular momentum j, here $j = \ell + s$ or ℓs

A nuclear shell is uniquely defined by : $n\ell_i$

The spin-orbit coupling is splitting the state with the same orbital angular momentum (electron shells) into TWO states now, using the total angular momentum as well

MAGIC NUCLEI & EXOTIC NUCLEI

Magic number signature

- Magic numbers= 2, 8, 20, 28, 50, 82...
- As we go to exotic nuclei, magic numbers are changing!
- Example: Ca (Z=20) vs Si (Z=14) for N=28

Shell structure for protons

CLUSTERING IN NUCLEI

With the α decay of heavy nuclei, came the idea that clusters of α particles (${}^4He=2p+2n$) might be preformed prior to emission

STUDY OF CLUSTERING IN ¹⁶O BY FOUR α-DECAY

- ${}^{4}\text{He}$ = 2 protons + 2 neutrons, or also called α particle
- 2 α = 8Be is UNBOUND doesn't exist
- triple α process in stars instead to produce ¹²C = 3 α
- Hoyle state in 12 C = excited, spinless state that is produced in the triple α process
 - ¹²C Hoyle state confirmed to be a 3α cluster
 - Mostly sequential decay = not linear chain structure
 - Structure as linear chain challenged by some theories and its mostly sequential decay
 - No other heavier nuclei have confirmed α -condensate states, Hoyle-like / linear chain
 - Study of ¹⁶O like R. Smith et al., PRL 119, 132502 (2017)

- Direct measurement of 4 α decay from the **0**+6 Hoyle-like state candidate at 15.097(5) MeV
- → Analysis of decay with 4-particle Dalitz plot

AT-TPC DETECTOR

Resolution capabilities

- Scattering angle = 1° for (α, α')
- Energy resolution of 30-40 keV/u in c.m.

- Active Target of 1 m length, 55 cm diameter
- → Thick target, good resolution, 4π detection
- MicroMegas detection pad plane
- 10,240 pads, equilateral triangles
- GET electronics for internal trigger
- Coupling with magnetic field
- Prototype (1/2 size) used for travel with ~2000 triangular pads

¹⁶O EXPERIMENT @ REA6 WITH SOLARIS (2021)

- ReA campaign in 2021 during transition to FRIB
- Stable or long-lived isotopes beams
- Upgrade to ReA6 with beams up to 10 AMeV
- New solenoid SOLARIS (4T) coupled to AT-TPC or HELIOS Experiment legan number

	Smith et al.	AT-TPC
Reaction	¹² C (α, α')	¹⁶ Ο (α, α')
Energy (MeV/nucleon)	10	10
Beam Intensity (pps)	1E+10	5E+03
Beam Time (hours)	60h	120h
Target Density (at/cm²)	5E+18	2.5E+21
Detection Efficiency	0.01	0.5
Cross section (mbarn)	0.86	0.17
Counts from N- α decay of Hoyle	93,000	465

* DWUCK calculations Direct Decay Limit (12C) < 0.04%

- 1. Introduction
- 2. Shell model & clustering
- 3. Nuclear radioactivity
- 4. Nuclear reactions

TYPES OF RADIATION

- Stable nuclei in black
- All other colors show radioactive nuclei
- They will decay within a certain time and with a certain method (α, β, γ, n, p, fission)

ALPHA DECAY

$$_{Z}^{A}X_{N} \rightarrow_{Z-2}^{A-4} X_{N-2} + \alpha$$

- Particle $\alpha = \text{nucleus } {}_{2}^{4}He$
- Possible from Z>50 and N<N_{stable}
- Dominant for Z>82

BETA DECAY

Neutron decay: $n \rightarrow p + e^- + v_e$

$$\beta^-$$
 decay: ${}_Z^A X_N \rightarrow {}_{Z+1}^A Y_{N-1} + e^- + v_e^-$ Neutron-rich side

 β^+ decay: ${}^A_Z X_N \rightarrow {}^A_{Z-1} Y_{N+1} + e^+ + \nu_e$ Proton-rich side EC decay: ${}^A_Z X_N + e^- \rightarrow {}^A_{Z-1} Y_{N+1} + \nu_e$

A 1 MeV beta can travel up to 4 m in air and 1 cm in plastic

Gamma Decay

GAMMA DECAY

Penetrates Earth's Atmosphere?

- X-rays and gamma (γ) rays are photons no charge
- A nucleus in an excited state (one nucleon in a higher shell) will want to deexcite and produce γ rays

Lead is good for shielding x-rays and γ rays

SPONTANEOUS FISSION

Nuclei that can spontaneously decay into two lighter fragments

Example: ²⁵²Cf (half-life = 85 y if only via fission)

Possible when the nucleus gets big (Z>100)

However, we usually have other decay processes that will compete with fission, such as alpha decay Half-life of 252 Cf = 2.65y

Symmetric fission

Asymmetric fission

OTHER DECAYS & RADIATION

- Proton decay = for very proton-rich nuclei, that have so many protons that it is not stable anymore and just rejects it
- Neutron decay = same on the neutron-rich side

Neutron shielding thickness depends on the energy of the neutron

- 1. Introduction
- 2. Shell model & clustering
- 3. Nuclear radioactivity
- 4. Nuclear reactions

NUCLEAR REACTIONS

- Most nuclei are unstable, and decay within a certain time, or half-life
- For nuclei farther away from the stable ones, their half-life gets shorter

How to study nuclei that live for less than a second? We can use the normal decay of an isotope, but then we have no control on when it happens

- → Create the nucleus of interest via an induced reaction
- → Use collisions and study the reaction fragments with detectors

NUCLEAR REACTIONS

 Elastic or Inelastic collision: SAME nuclei incoming as outgoing, change in trajectory of the particle, transfer of energy (only for inelastic) and heavier nucleus at excited state

$$_{Z}^{A}X_{N} + A \rightarrow_{Z}^{A}X_{N} + A$$

 Transfer (low energy <50 MeV/u) or knockout reactions (higher energy): remove or add one or two nucleons to a nucleus

One proton removal reactions:

$${}_{Z}^{A}X_{N} + p \rightarrow {}_{Z-1}^{A-1}X_{N} + 2p$$

$$_{Z}^{A}X_{N} + d \rightarrow_{Z-1}^{A-1} X_{N} +^{3} He$$

One neutron removal

$$_{Z}^{A}X_{N} + p \rightarrow_{Z}^{A-1} X_{N-1} + d$$

.

- Fragmentation: removal of a larger number of nucleons
- Fission: breakup of a heavy nucleus into two smaller fragments
- · Fusion: fusion of two nuclei into heavier one

CONSERVATION PRINCIPLES

In nuclear reactions, a few principles are ALWAYS observed:

- Conservation of energy in the system = total energy in the initial system is the same in the final system
- Conservation of proton, neutron, mass number = valid for all nuclear reactions EXCEPT β decay (weak interaction)

Example: a (d, p) reaction

$$^{16}_{6}C_{10} + d \rightarrow^{A}_{Z} X_{N} + p$$

- (1) How many protons /neutrons are transferred? $d \rightarrow p$ so one neutron is picked up by a nucleus
- (2) What is the outgoing nucleus ${}_Z^AX_N$? Write up the conservation of proton and neutron numbers:

$${}_{6}^{16}C_{10} + d \rightarrow_{Z}^{A} X_{N} + p$$

$${}_{6}^{16}C_{10} + {}_{1}^{2} H_{1} \rightarrow_{Z}^{A} X_{N} + {}_{1}^{1} p_{0}$$

Initial	Final
$Z_{initial} = 6 + 1 = 7 = Z_{tot}$	$Z_{tot} = Z_{final} = 7 = Z + 1$
$N_{initial} = 10 + 1 = 11 = N_{tot}$	$N_{tot} = N_{final} = 11 = N + 0$

$$Z^{X_N}$$

$$Z = 6$$

$$N - 11$$

Clémentine Santamaria, Michigan State / Morgan S

COLLABORATIONS

AT-TPC COLLABORATION

FRIB / Michigan State University

D. Bazin*, M. Cortesi, A. Davis, W. Mittig*

RCNP & Osaka University

N. Aoi, T. Furuno*, E. Ideguchi, T. Kawabata*, A. Tamii, D. T. Tran

University of Santiago de Compostela

Y. Ayyad Limonge, B. Fernandez Dominguez*

- J. Chen* (ANL)
- J. Lou* (Peking University)
- A. O. Macchiavelli* (Oakridge National Laboratory)
- Hooi Jin Ong* (Institute of Modern Physics)
- C. Santamaria (MSU²)
- D. Suzuki* (RIKEN Nishina Center)

And the rest of the AT-TPC collaboration

UNIVERSITY

****TRIUMF**

THANK YOU FOR YOUR ATTENTION!

ACTIVE TARGET

- Active Target = our target material is ALSO our detector
- Mostly gaseous or liquid detectors
- Example: Time Projection Chamber (TPC) for charged particles

- Homogeneous electric field
- Ionization and drift of electrons towards the pads, or detection plane
- 2D picture of all charged particles in the volume from the pads + third dimension from the time of arrival

NUCLEAR PHYSICS ACCELERATOR

- Most nuclei we produce do NOT exist in nature
- Need an accelerator!

FRIB @ MICHIGAN STATE UNIVERSITY

- FRIB = Facility for Rare Isotope Beams (started in June 2022)
- Primary beams from ¹⁶O to ²³⁸U from 150 MeV/u to 290 MeV/u (β= 0.5-0.6)

FRIB VIDEO

https://www.youtube.com/watch?v=P4rG-5y9ums

A DETECTOR FOR EVERYTHING?

4) EXPERIMENTAL AREAS

- Use the secondary beam we created & separated before
- Collision with a secondary target
- Need to detect the products of those reactions: protons, neutrons, electrons, γ rays (photons), heavier particles...
- For every experiment, we will need to choose the detection system that fits BEST
- We don't have a system that can do everything...

1ST SEASTAR CAMPAIGN RESULTS

X.Y. Liu *et al.*, "Spectroscopy of ^{65,67} ₂₇Mn: Strong coupling in the N = 40 "island of inversion", Phys. Let. B **784**, 392–396 (2018). M.L. Cortés *et al.*, "Inelastic scattering of neutron-rich Ni and Zn isotopes off a proton target", Phys. Rev. C **97**, 044315 (2018).

Smart ZAP board

D. Bazin @ NSCL

AT-TPC filled with 200 Torr of He (90%) + CO₂ (10%)

