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Homework 1

Question 1. Starting with independent mass and flavor basis/eigenstates of only two dimensions, derive
the lepton mixing matrix and demonstrate the length and energy dependence of the oscillatory effect.
Show the survivability of νµ as a function of length and energy.

We start with describing the independent mass and flavor basis/eigenstates where α = e, µ and i = 1, 2:

|να〉 =
∑

i

Uαi |νi〉 ,

|νi〉 =
∑

α

U∗
αi |να〉 .

This gives complete definitions of the basis/eigenstates for neutrinos in terms of the mass and flavor such
that:

〈να|νβ〉 = 〈νi|νj〉 = δαβ = δij = 1(if α = β or i = j),
and

U =
[
Ue1 Ue2
Uµ1 Uµ2

]
.

Again, neutrino flavor eigenstates are a superposition of mass eigenstates which require the propagation
of multiple mass/energy eigenstates and is fairly complicated to manipulate because the flavor and mass
eigenstates are not closely aligned (like in QCD concerning the CKM matrix). Instead individual neutrino
mass basis/eigenstates can easily be manipulated as a plane wave propagating through space-time (where
here traditional evolution in time for a standard plane wave also involves spatial coordinates):

|νj(t)〉 = e−i(Ejt−~pj ·~x)) |νj(0)〉 .

In the ultra-relativistic limit (e.g. where the Lorentz factor, γ >> 1 =⇒ E ≈ p,t ≈ L) and using
natural units (~, c = 1), the relativistic energy-momentum relation can be approximated (using a Taylor
expansion) as:

E2 =
∣∣∣p2

∣∣∣ + m2 =⇒ Ej =
√

|pj|2 + m2
j =⇒ p ≈ pj +

p2
j

2m
=⇒ E ≈ Ej +

E2
j

2m
,

where the E with no subscript refers to the wave-packet of neutrino flavor. This is allowed because
again, neutrino masses are incredibly small. When reinserted back into the plane-wave form for neutrino
propagation:

|νj(t)〉 = e−i(EL−EL+
m2

j
L

2E
) |νj(0)〉 .

=⇒ |νj(t)〉 = e−i
m2

j
L

2E |νj(0)〉 .

The mass differences (or mass splittings) matter here because even though the masses are small as
compared to the energy of neutrinos, the masses relative to each other may not be small and are especially
important when acting as a phase in argument of the exponential. From inspection, it is obvious that if
any of the mass splittings are the same, the initial and time evolved state are identical, causing oscillations
to vanish! Additionally, the L/E dependence is readily available in the argument of the exponential.

Now to derive the survivability of νµ. To define this, we first need to get to the full evolution of the
wave function:

〈νβ|να(L)〉 =
∑

i

U∗
βi 〈νi|

∑
j

Uαje
−i

m2
j

L

2E |νj〉

=
∑

i

∑
j

U∗
βiUαje

−i
m2

j
L

2E 〈νi|νj〉

1
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which implies that the general probability of survivability for two flavors can be derived as the wave
function squared with its conjugate:

P(να→νβ) = |〈νβ|να(L)〉|2 =

∣∣∣∣∣∣
∑

j

U∗
αjUβje

−i
m2

j
L

2E

∣∣∣∣∣∣
2

=
∑

j

U∗
αjUβje

i
m2

j
L

2E

∑
k

UαkU∗
βke−i

m2
k

L

2E

and the sums can be combined and limited due to symmetry arguments:

=
∑
j<k

U∗
αjUβjUαkU∗

βkei
(m2

j
−m2

k
)L

2E

where for survivability α = β = νµ. Given the two-dimensional nature of this approximation, there are
only two mass states and two flavor states, indicating that the survivability can be derived directly from
the oscillation from νµ to νe. The general description of a two-dimensional rotation matrix is:

U =
[

cos θ sin θ
− sin θ cos θ

]
.

which indicates:

P(νµ→νe) = 2 sin θ cos θei
(m2

2−m2
1)L

2E

and suggests:

P(νµ→νµ) = 1 − sin2 2θ sin2 (m2
2 − m2

1)L
4E

.

The values for θ and m2
2 −m2

1 can be approximated as the best fit value for θ12 and the solar mass splitting.
�

Question 2. Take what you learned above and expand to a three-dimensional lepton mixing matrix.
Please define the Jarlskog invariant for leptons and show that a degeneracy exists for the mass splittings
in consideration of the asymmetry between leptons and anti-leptons. Also show that if any of the mass
splittings vanish, the asymmetry vanishes. Finally, derive the probability for the survivability of muon-
neutrinos as a function of length and energy.

Using the definition of the lepton mixing matrix from the first problem, the 3 dimensional lepton mixing
matrix has entries for three flavor and mass basis/eigenstates and can be written:

U =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 .

Returning to the definition of oscillations:

P(να→νβ) = |〈νβ|να(L)〉|2 =

∣∣∣∣∣∣
∑

j

U∗
αjUβje

−i
m2

j
L

2E

∣∣∣∣∣∣
2

=
∑
j>k

U∗
αjUβjUαkU∗

βkei
(m2

j
−m2

k
)L

2E

However this time, the probability is defined in the most general terms of the real and imaginary parts of
the matrix product as a consequence of the orthogonality of basis states:

P(να→νβ) = δαβ − 4
∑
j>k

Re{U∗
αjUβjUαkU∗

βk} sin2 (m2
j − m2

k)L
2E

+ 2
∑
j>k

Im{U∗
αjUβjUαkU∗

βk} sin
(m2

j − m2
k)L

2E
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The matter-antimatter asymmetry can be determined by subtracting the probability of oscillation for
neutrinos from the probability of oscillation from anti-neutrinos.

P(να→νβ) − P(ν̄α→ν̄β) = 4
∑
j>k

Im{U∗
αjUβjUαkU∗

βk} sin
(m2

j − m2
k)L

2E

From this equation the Jarlskog invariant can be readoff as:
J = Im{U∗

αjUβjUαkU∗
βk}.

In terms of three flavor oscillations, the matter-antimatter asymmetry can be expressed as:

ACP = P(να→νβ) − P(ν̄α−ν̄β) = 16 sin (m2
2 − m2

1)L
4E

sin (m2
3 − m2

2)L
4E

sin (m2
3 − m2

1)L
4E

J
∑

γ

εαβγ.

In this form, the degeneracy exists in m3 as if it is made lighter than m1,2 it causes a negative in the
argument of two sine functions which cancel each other out and preserve the asymmetry. Additionally if
any mi = mj, one of the arguments of a sine function becomes zero, instantly removing the asymmetry.

Valid forms of the oscillation probability can be found in a few different ways.
1. The most complicated is to start with the full definition of the PMNS matrix and exploiting its

similarity to the Euler angles for the definition of a rotation among two different bases in 3 dimensions:

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 ,

where cij = cos θij and sij = sin θij. The survival probability for νµ can then be derived using the equations
above. From here, the enterprising student would have to refer to best fit values for each of the Euler angles
(θ13 = θreactor and θ12 = θsolar) as well as the leading value for δCP .

A reasonable approximation can be made by considering the two flavor results from the previous question:

P(νµ→νµ) ≈ 1 − sin2 2θ23 sin2 (m2
3 − m2

2)L
4E

.

2. Another equally valid way of deriving the survival probability involves assuming the matrix elements
under certain assumptions. The Tri-bimaximal assumption is incompatible with reality (the reactor contri-
bution is small but nonzero) and assumes θ13 = θreactor = 0◦, θ23 = θatmospheric = 45◦, θ23 = θsolar = 35.26◦

and gives:

U =


√

2
3

√
1
3 0

−
√

1
6

√
1
3

√
1
2√

1
6 −

√
1
3

√
1
2

 .

yielding a similar solution with a slightly different normalization value:

P(νµ→νµ) ≈ 1 − A sin2 (m2
3 − m2

2)L
4E

.

�

Question 3. Try to expand this analysis to a four-dimensional lepton mixing matrix. Attempt to the
define the appearance probability for neutrinos of the fourth type from muon neutrinos. These are called
sterile neutrinos. Derive the probability for the survivability of muon-neutrinos as a function of length,
energy, and the magnitude of the fourth mas splitting.

Using the work from the previous questions the PMNS matrix can be expanded with an additional row
and column for the presence of a single sterile flavor and additional mass state:

U =


Ue1 Ue2 Ue3 Ue4
Uµ1 Uµ2 Uµ3 Uµ4
Uτ1 Uτ2 Uτ3 Uτ4
Us1 Us2 Us3 Us4

 .
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In this situation the number of necessary independent angles moves from three to six and three possible
sources of matter-antimatter asymmetry exist for Dirac neutrinos. To define this matrix in terms of Euler
angles requires the complete definition of each of the rotations and the appropriate order of multiplication
however the form of each rotation should be familiar given the definition of the mixing matrix for the two
dimensional case:

R12(θ12) =


c12 s12 0 0

−s12 c12 0 0
0 0 1 0
0 0 0 1

 ,

R13(θ13) =


c13 0 s13 0
0 1 0 0

−s13 0 c13 0
0 0 0 1

 ,

R14(θ14) =


c14 0 0 s14
0 1 0 0
0 0 1 0

−s14 0 0 c14

 ,

R23(θ23) =


1 0 0 0
0 c23 s23 0
0 −s23 c23 0
0 0 0 1

 ,

R24(θ24) =


1 0 0 0
0 c24 0 s24
0 0 1 0
0 −s24 0 c24

 ,

R34(θ34) =


1 0 0 0
0 1 0 0
0 0 c34 s34
0 0 −s34 c34

 ,

with the appropriate multiplication order to define the four dimensional matrix:
R = R12(θ12R13(θ13)R14(θ14)R23(θ23)R24(θ24)R34(θ34)

The probability for the appearance of sterile neutrinos can be gleaned from the equation from the previous
two questions:

P(να→νβ) =
∑
j<k

U∗
αjUβjUαkU∗

βkei
(m2

j
−m2

k
)L

2E .

For the νs appearance probability from νµ the expression can adapted from the 4 × 4 lepton mixing matrix
(with the assumption that the splitting between the first and second mass states is two orders of magnitude
smaller compared than the other proposed mass splittings):

P(νµ→νs) ≈ cos4 θ14 cos2 θ34 sin2 2θ24 sin2 (m2
4 − m2

1)L
4E

− sin2 θ34 sin2 2θ23 sin2 (m2
3 − m2

1)L
4E

+1
2 sin δ24 sin θ24 sin 2θ23

(m2
3 − m2

1)L
4E

.

For the survival probability for νµ:

P(νµ→νµ) ≈ 1 − sin2 2θ24 sin2 (m2
4 − m2

1)L
4E

+ 2 sin2 2θ23 sin2 2θ24 sin2 (m2
3 − m2

1)L
4E

+1
2 sin δ24 sin θ24 sin 2θ23

(m2
3 − m2

1)L
4E

.
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If the short baseline assumption is utilized ( (m2
3−m2

1)L
E

<< 1, (m2
2−m2

1)L
E

<< 1, with (m2
4−m2

1)L
E

>> 1):

P(νµ→νµ) ≈ 1 − sin2 2θ24 sin2 (m2
4 − m2

1)L
4E

.

�

Question 4. Plot all νµ survivability probabilities as a function of L/E across 7 orders of magnitude
starting at 10−3 for three different possible values for the mass splittings of the fourth neutrino state
versus the first. Those values should be 5, 0.5, and 0.05 eV2. From this plot make a statement about the
best possible location to distinguish which model exists in reality.

Figure 1. νµ survivability as a function of L/E and the sterile neutrino mass splitting.

The mass splittings affect the frequency of oscillations and thus the best place to put a detector (or
array of detectors) is where their oscillation maxima do not overlap. The largest potential mass proceeds
to a steady in disappearance at around 10km/GeV while the midmass value shows clear oscillations across
a similar distance that the smallest mass shows a clear decrease. This indicates that a steady state
measurement at that distance shows an overall difference in level that would be discernable with the
proper precision. Multiple answers to this question exist. �
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